
Protected: SDU: “Mentor-avatarer med personligheder”, april 2025
There is no excerpt because this is a protected post.
This guideline for the ROBOdidactics model was developed during a didactic workshop (2021) by teachers, lecturers, and educational coordinators from various secondary education institutions, several lower secondary schools, and a university. A slight update has since then been made in connection with the development of the ROBOdidactics mobile app.
The guiding questions below should not be regarded as comprehensive or mandatory but can be taken as inspiration for further reflection.
Principle “Pick & play”: Select the elements that are most relevant to the given teaching course, typically 6-8 elements in total. It is NOT intended that all 21 elements of the model be thoroughly worked through for each course.
Order: Teaching modules can be initiated differently and therefore in the 4 different quadrants of the model. For example, impulses may come from outside when a company offers collaboration on a technological case (environment), or there may be a need to promote students’ critical reflections on a new technology (digital literacy). A new technology may have entered the market that needs to be tested (digital production), or new curricula may suggest the use of new technologies (teaching design).
Teacher Janne presents the model (in Danish):
The following guiding questions refer to ROBOdidactics 2.0 (2021).
Sustainability was added as a new and important dimension in the upgraded model DigiDidactics, which originated from ‘ROBOdidactics’ after a thorough cross-national process (Sept-Oct 2024) involving Danish and German teachers, managers, and researchers.
The guiding questions will be updated according to DigiDidactics during 2025.
Learning objectives
Concerns the competencies (knowledge, skills, attitudes) that students are expected to achieve during the module: technically or related to other subjects, socially, and personally. Also, refer to the regulations for the subjects.
The students´ coinfluence
Students can advantageously be involved in the planning of the module and during the process. For example, by choosing a theme, case, location, target group, role, etc.
Content, Activities, and Framework
Concerns the module’s subjects and content, with activities such as presentations, investigations, independent studies, competitions, etc. Frameworks such as location, physical set-up, and equipment.
Students´ Learning Products
Concerns students’ submissions, possibly with requirements and specifications. For example, codes, prototypes, given solutions, presentations, posters, flowcharts, etc.
Pedagogical Methods, Playground Methods
Concerns promoting students´ motivation, reflection, creativity, team building, etc. Targeted use of group work, individual performance, peer learning, etc.
Evaluations
Who evaluates what and how: Students’ learning processes and products, the module as a whole, target group satisfaction, etc.
Career Learning
Career learning is an approach and method to promote the development of students’ competencies to choose their pesonal pathway. Tools can include activities such as transition courses, company visits, peer-to-peer teaching, information searches, etc. The activities are prepared by and with the students, while there may be assignments, and they are summarized afterward with a view to possible career choices (“before-during-after”).
Target Groups and Co-Creation
Concerns students’ and teachers’ work with stakeholders outside the school. Involvement of stakeholders in, for example, cases, studies, or events.
Digitalization in Society
Concerns digital production in relation to societal development: Digitalization of trades, daily life, global trends, UN’s Sustainable Development Goals, etc.
Learning in the Education Chain
Concerns creating coherent teaching modules across educational institutions and levels. Teacher-teacher collaboration, student-student tutoring, and support from management.
Business and Value Creation
Concerns collaboration with the business sector on content in teaching modules and career learning for students. Technologies in use and commercial aspects.
The new guiding questions for sustainability (Oct. 24) in the context of teaching with digital production, are inspired by the aims of balancing the needs of the economy, environment, and social well-being (Brundtland report, 1987, and SDG goals, UN 2015).
Choice of Technologies
Concerns the choice of equipment and software for the main digital production, development environments, and user apps. Possibly also supporting technologies, such as video, image edition, etc.
Methods
The choice of methods depends on the duration of the module, educational level, types of students, and learning objectives. The methods do not necessarily exclude each other but can complement each other.
Iterative Design Processes
Concerns more open processes in longer-lasting modules, with step-by-step improvements. From freer to more structured modules with frameworks, constraints, predefined milestones, and team roles. Iterative development involves several successive rounds in the design circle (design, test, evaluation, and adjustments).
Worked Examples, Pair Programming
Worked examples are digital resources/simple programs for further processing in student productions.
Pair programming is done in pairs, and students develop each other’s products further. It supports collaboration and discussions. For example, every 10 minutes, they switch places in front of the computer.
Play, Experiments, and Innovation
Concerns experimental approaches to technologies with minimal instruction. Possibly the use of playground methods, aimed at relationship building, idea generation, daring to fail, etc.
Retrospective Reflections
After completion, students describe their work process and technological products using the correct terms and in relation to the underlying theories. This concerns what students have learned about technology and design processes.
Digital Empowerment
Involves a critical, reflective, and constructive approach to digital technologies and automation, including gaining an understanding of security, ethics, and consequences.
Ethics and Society
Concerns ethical issues and dilemmas in the use and development of technology, for example, to support climate, economy, security, combat crime, etc.
Individual Relevance
Involves relating technologies to their significance for individual students, for example, in their leisure time and daily life, their future aspirations, their learning preferences, etc.
Critical Thinking
Involves reflecting on the advantages, disadvantages, and consequences of technologies and their use, including cybersecurity, personal data protection, source criticism, etc.
Technological Actionability
Involves the ability to express oneself and master tools to articulate computational thinking in a digital artifact, selecting and developing digital resources.
Communities of Practice
The digital competence and skill in applying it in social professional contexts, even when the practice occurs in actions that are not expressed in words.
Computational Thinking
Involves promoting students’ abilities to apply knowledge about networks, algorithms, programming, logical thinking, abstraction, and pattern recognition. Data modeling, testing, and trialing.
In general
Environment and ´digitainability´
Economy and ressources
Psycho-social well-being
The videos below refer to ROBOdidactics vs. 2.0 (2021) and are in Danish.
(Under revidering. Publiceres i løbet af efterår 2024.)
Undervisningsforløbene i MYRE midt gennemføres i projektperioden 2024-2026 og publiceres i takt med, at de bliver implementeret på følgende uddannelsesinstitutioner:
– Jordbrugets UddannelsesCenter Aarhus (JU) involverer anlægsgartneruddannelsen i Beder
– SOSU Skive Thisted Viborg (SOSU STV) bidrager med SOSU-uddannelserne i Skive
– Mercantec står som leadpartner og indgår derudover i den faglige udvikling med datateknikeruddannelsen
– Syddansk Universitet inddrager uddannelsen ´Game Development and Learning Technologies´
Forløbene i MYRE midt er hovedsageligt koncentreret omkring de involverede erhvervsuddannelser. Dog ønskes samtidig at styrke samarbejdsfladen i uddannelseskæden mellem akademiske og erhvervsrettede uddannelser. Således bidrager lektorer og studerende fra uddannelsen inden for Learning Technologies på Syddansk Universitet (SDU) som ressourcer for EUD-undervisere i udviklingen af deres lokale undervisningsforløb.
– Eksperimenter, efterår 2024
– ”Elev-avatarer til læreplads i udlandet”, marts-april 2025, samt efterår 2025 og forår 2026
– ”At tale gartnerlatin med AR-plantetool”, okt. 2025 og forår 2026, på grundforløb 2 og 4x hovedforløb
– ”Droneinspektion af store træer”, forår 2026, med forberedelse i 2025
– ”En ny grundbog til gartneruddannelsen”, undersøgelser i forår 2025
Assistance fra SDU
IT-koordinatoren på JU Beder er selv en avanceret IT-ekspert, dog ikke specialiseret inden for programmering af de nye teknologier. SDU har inddraget en videnskabelig assistent til at støtte IT-koordinatoren i valg og tilpasning af velegnede teknologiske løsninger.
– Eksperimenter, efterår 2024
– ”VR-didaktik for elevgrupper med dansk som fremmedsprog”, forår og efterår 2025, samt forår 2026
– ”International læringscafé med AI-tools”, forår og efterår 2025, samt forår 2026
– ”Fagord og fagsprog med H5P”, forår og efterår 2025, samt forår 2026
– “Samtale med en AI-borger” SDU kandidatstuderende & SOSU undervisere, forår 2025
Assistance fra SDU
SDU indgår i SOSU-skolens arbejde med teknologisk ekspertise. To specialestuderende undersøger, om og hvordan en specialdesignet borger-avatar kan bidrage til sprogtræning på SOSU STV.
– Eksperimenter, efterår 2024
– “Machine learning med Python”, februar 2025
– ”Co-creation på tværs af landegrænser”, dec. 2025 – feb. 2026
– ”Elevernes individuelle faglige guide – Gummi And”, november 2025
Assistance fra SDU
SDU indgår med faglig interaktion mellem SDU-studerende og datateknikerelever. Desuden bidrager SDU med ekspertise til anvendelse i datateknikeruddannelsen.
– Eksperiment “Studerende analyserer sprog-app”, nov. 2024
– “Avatarer med personligheder”, april 2025
– “Samtale med en AI-borger” SDU kandidatstuderende & SOSU undervisere, forår 2025
– “Semesterprojekter med SOSU udsyn”, forår 2025, 3 hold bachelorstuderende
• Hvert undervisningsforløb indeholder en eller flere nye teknologier.
• Alle forløb er didaktisk i samklang med hinanden, men varierer i omfang, brug af teknologier, niveau og indhold.
• Forløbene opstår af lokale impulser og videreudvikles gennem gensidig inspiration og evalueringer på tværs af uddannelsesinstitutioner. Alle undervisningsforløb er i overensstemmelse med bekendtgørelserne for deres respektive uddannelser og fag.
• En elevcentreret og praksisbaseret pædagogik gør det muligt for eleverne at arbejde selv med teknologierne så meget som muligt.
• i MYRE midt har hvert forløb fokus på teknologiernes anvendelse til fremme af elevernes motivation for at lære og anvende fremmedsprog. Læs mere om didaktikken for flersprogethed i MYRE midt.
• I MYRE sigtes generelt mod at udvikle forløb, der kan genanvendes eller tilpasses i de lokale “uddannelseskæder”, i samarbejde mellem uddannelsesinstitutioner på tværs af niveauer. Derfor designes forløbene til at være skalerbare og at kunne tilpasses forskellige bekendtgørelser, fag og niveauer. I MYRE praktiseres dette fokus i snitfladen til en akademisk ingeniøruddannelse.
• Effekten på elever og undervisere evalueres, baseret på et kvalitetskoncept.
There is no excerpt because this is a protected post.
There is no excerpt because this is a protected post.
Forløbet omhandlede maskinlæring og blev gennemført som et 10-dages valgfag i uge 8-9 2025. Forløbet blev til i et samarbejde
There is no excerpt because this is a protected post.
Forløbet er gennemført i forår 2025 i rammerne af skolens ´Internationale Læringscafé´ hver tirsdag eftermiddag. Nedenstående erfaringer stammer fra et
Forløbet blev gennemført i perioden marts-april 2025 med elever på deres grundforløb 2 (GF2). Forløbet retter sig først og fremmest
Forløbet er blevet gennemført som en første iteration i perioden marts-april 2025. Tre elever (18-29 år) fra hovedforløb #1 i
Det korte forløb blev gennemført d. 21. nov. 2024, i rammerne af en lektion i faget Læringsteknologi I på uddannelsen
Arrangementerne i MYRE midt omfatter følgende (efterår 2024 – forår 2026):
Arrangementerne med offentlig interesse publiceres løbende her. Distribution af materialer fra arrangementerne foregår via TEAMS.
Denne todelte workshop gennemføres med personlig deltagelse. Første del omhandler fortsat undervisernes arbejde med EUD-elevers fremmedsprog. I anden del vil
Seminar #2 er det andet af 4 fælles seminarer for alle projektdeltagere og særligt inviterede interessenter. Formålet med seminar #2
Denne tech workshop gennemføres som webinar. Webinaret byder på erfaringer med forskellige AI-værktøjer til fremme af danske HHX-elevers tyskkompetencer, hhv.
Denne workshop gennemføres som webinar. Formålet med webinaret er at introducere til de motivationsmodeller, som refereres til i MYRE midt
MYRE midt kick-off er det første af 4 fælles seminarer for alle projektdeltagere og særligt inviterede interessenter. Formålet med kick-off
Om følgegruppen Formålet med følgegruppen er at inspirere og kvalificere projektets faglige processer. Følgegruppen til MYRE midt består af –
MOOC står for Massive Open Online Course.
(Forklaring, historie, udbredelse og i DK, teknologi)
I MYRE arbejder undervisere sammen på tværs i uddannelseskæden og dermed på tværs af deres pædagogiske og didaktiske grundfagligheder. Når underviserne lærer og udvikler med hinanden, er der dels brug for en fælles didaktisk forståelsesramme. Denne ramme har vi kunnet udvikle i et større praksisfællesskab som den efterhånden velafprøvede og veletablerede model ROBOdidaktik. Men derudover er der brug for en fælles platform til (fortsat) kompetenceudvikling, uafhængig af enkelte projekter og frit tilgængelig for alle.
Til dette formål blev det nærliggende at tænke på MOOCs om didaktiksering af fremtidsteknologier. Syddansk Universitet er én af hovedkræfterne bag MYRE indsatsen og de forudgående projekter. SDU forestod også den action research, som resulterede i ROBOdidaktik modellen. Da SDU åbnede sin egen MOOC-læringsplatform OpenEdX i 2023, fik MYRE stillet faciliteten til rådighed.
Dermed kunne visionen om MOOCs, der henvender sig tværinstitutionelt til undervisere, afprøves med en prototype. MYRE Syddanmark blev ramme om udviklingen af ´Kunstig intelligens (AI) som læringspartner´ (2023/2024).
(Om MOOC´ens udviklingsproces, koncept og indhold)
Download analyserapport, SDU (jan. 2024)
I ´AI som læringspartner´ indgår en række videoforklaringer af generativ kunstig intelligens, anvendelse af AI i undervisningen og etiske overvejelser.
Denne video med lektor Gunver Majgaard, SDU (2024), samler nogle af hovedpointerne.
The intensive digitalization over relatively few years has led to a focus on teaching with new technologies and technological production. At the same time, a need has arisen to achieve greater mutual understanding and coherence across educational levels – in the “education chain”. Schools have also opened up or are asked to open up to their environment, including businesses, other public sector organizations, and civil society.
In this context, the ROBOdidactics model has been developed and refined during a Southern Danish project series. The model is practice-based and qualified in an action research process.
The technology-didactic model supports the planning, evaluation, and communication of teaching with digital production. The model covers 4 dimensions:
TEACHING DESIGN with learning objectives, pedagogical methods, student co-determination, evaluations, etc.
DIGITAL PRODUCTION about the technological part of the learning processes, with various methodological approaches to iterative development and innovation processes.
DIGITAL LITERACY, which includes the technological empowerment of students, their critical thinking, and ethical considerations.
ENVIRONMENT / THE EXTERNAL WORLD as a perspective by collaborating with companies, other educational institutions, etc., with career learning as one of the important methods.
Users can access ROBOdidactics “anywhere they want” and choose “whatever they want” as the appropriate elements for the given individual teaching modules.
In a series of didactic workshops across the education chain, numerous teachers and the schools’ pedagogical coordinators have contributed to the iterative development of ROBOdidactics.
Moreover, version 2.0 of the model has been supplemented with guiding reflection questions that can support the understanding of the model.
ROBOdidactics has been developed, tested, and reviewed across educational organizations and levels during a Southern Danish project series (2018-2022).
In MYRE (2023 and beyond), the model is used as a common framework to communicate, evaluate, and further develop educational programs with emerging technologies.
MYRE DK-DE resulted in 13 teaching modules, conducted at Regionales Berufsbildungszentrum Kiel, Svendborg Vocational Highschools (SESG), The University of Southern Denmark (SDU), and level-crossing with other educational institutions in the local “education chains”.
Some crucial principles were applied to the teaching modules.
Each teaching module included one or more emerging technologies. The project had specifically focus on The Metaverse with Augmented and Virtual Reality (AR, VR, XR), generative Artificial Intelligence (GenAI), and robotics.
All modules aligned with the ROBOdidactics framework but varied in duration, technologies, levels, and content.
A minimum of 400 students at different levels participated. Impacts on students and teachers were evaluated based on a quality assurance concept. The students provided feedback on their new technological insights and competencies, their ability for relating the technologies to sustainability, and their career learning of educational pathways and job profiles with emerging technologies.
• The modules originated from local impulses, refined through mutual inspiration and reviews across the border. All teaching modules complied with the respective local frameworks.
• A student-centered and practice-based pedagogy enabled the students to work with the technologies themselves as much as possible.
• Most modules aligned with at least one UN sustainability goal.
• The partners adapted variations of their teaching modules in each their local “education chain”, collaborating with institutions across educational levels. Thus, the teaching modules were designed to be scalable and adaptable to different regulations, subjects, and levels.
The Danish and German partners collaborated on this work during the entire process, and local network partners were involved.
The tech-didactic model ROBOdidactics served as a border-crossing and level-crossing framework for communicating, evaluating, and re-designing local teaching modules.
13 teaching modules have been developed and exchanged on among the partners, and 12 of them have been implemented.
– DE gym ”With robotics on mission to Mars” & learning videos – Jan. 2024
– DK HHX Svendborg “AI-supported tools for marketing” – Feb.-March 2024
– DK SDU “Semester projects with XR” – Feb. – June 2024
– DK HHX “Personal AI-trainer for speaking German”, Oct. 2024
– DK HTX Svendborg “VR glasses in biology lessons” – March-April 2024
– DK HHX Svendborg ”ChatGPT in the subject German language“ – March 2024
– DK HHX Svendborg/DE RBZ Kiel ”Across borders: digital learning”, Infostand Berlin stand – April 2024
– DK HHX Svendborg & Haarhs “AI supported tools for business development” – Oct.-Nov. 2024
– DK SDU & UCL “XR in health education” – Feb. 2024
– DK HTX Svendborg & Haahrs “Electric gokarts and Kinematics” – May 2024
– DE RBZ Kiel & Gemeinschaftsschule ”Girls´ Day with Robotics” – Jan. 2024
– DE RBZ Kiel & Fachhochschule Kiel “AR-illustrated posters: renewable energies” – Feb./March 2024
– DK HHX Svendborg & SDU “Enjoy your exam!” VR & 360 degree cam – not realized
The teaching module was conducted over 3 weeks (October–November 2024) in collaboration with Haahrs Lower Secondary School and Svendborg Business
The module was conducted 4th Oct. 2024 at Business Highschool Svendborg (Svendborg Erhvervsgymnasier, HHX) with 24 students from grade 11
The teaching module was conducted over 20 weeks (Feb. to June 2024) as part of the semester projects for engineering
The module was conducted 5th Feb. 2024, as a specific event in the framework of an “open house” activity at
The teaching module was conducted at business highschool RBZ Wirtschaft Kiel, with students from the study line ´business informatics´, grade
The teaching module was conducted in the framework of a project week at business highschool RBZ Wirtschaft Kiel, with students
The teaching module took place in February 2024 at the University of Southern Denmark (SDU) as a collaboration between SDU
The teaching module was conducted with electric Go-Karts at Technical Highschool Svendborg (HTX), 3rd May and 13th May 2024. 4
The teaching module was conducted in March 2024 at Business Highschool Svendborg (Svendborg Erhvervsgymnasier, HHX). 26 students (17 males, 9
The teaching module was conducted at Technical High School Svendborg (HTX) in March 2024 with 28 students in 11th grade
The teaching module has been conducted between 1st March – 20th April 2024 at business highschool Svendborg (HHX). 31 students
The module emerged from initial cross-national dialogues between Danish and German MYRE teachers, as a joint initiative including 2 Danish
The following outlines a preliminary analysis and the initial tentative designs for a case titled “Enjoy Your Exam!” This intended
Vejledningen til modellen ROBOdidaktik er udarbejdet i løbet af didaktiske workshops (2021) af undervisere og pædagogiske koordinatorer fra en række ungdomsuddannelser (EUD, HHX, HTX, STX), flere grundskoler og et universitet. Der er sidenhen foretaget en let opdatering i anledning af mobil app´en ROBOdidaktik.
De vejledende spørgsmål skal ikke betragtes som fyldestgørende, men må gerne tages som inspiration til videre refleksion.
Princip “Pick & play”: Vælg de elementer, der er mest relevante for det givne undervisningsforløb, i alt typisk 6-8 elementer. Det er IKKE meningen, at alle modellens 21 elementer skal gennemarbejdes for hvert forløb.
Rækkefølge: Forløb kan blive initieret forskelligt og dermed i de forskellige kvadranter i modellen. Der kan fx komme impulser udefra, når en virksomhed tilbyder samarbejde om en teknologisk case (omverden), eller der kan være et behov for at fremme elevernes kritiske overvejelser om en ny teknologi (digital dannelse). Der kan være kommet en ny teknologi på markedet, som skal afprøves (digital produktion), eller nye læreplaner lægger op til brug af nye teknologier (undervisningsdesign).
Underviser Janne præsenterer modellen:
Læringsmål
Omhandler viden, færdigheder hhv. kompetencer, som eleverne skal opnå i forløbet: fagligt, socialt og/eller personligt. Se også vejledningerne til fagene.
Elevernes medindflydelse
Eleverne inddrages med fordel i planlægning af forløbet og undervejs. Ved fx at vælge tema, case, sted, målgruppe, rolle el.lign.
Indhold, aktiviteter og rammer
Omhandler det faglige stof og materialer fra forløbets fag. Aktiviteter som oplæg, undersøgelse, konkurrence m.m. Rammer med sted, indretning og udstyr m.m.
Elevernes læringsprodukter
Omhandler elevernes afleveringer, evt. med kravspecifikationer. Fx koder, prototype, givne opgaveløsninger, præsentation, flowchart, m.m.
Pædagogiske metoder, legemetoder
Omhandler fremme af motivation, refleksion, kreativitet, teambuilding m.m. Målrettet brug af gruppearbejde, individuel præstation, peer-learning etc.
Evalueringer
Hvem evaluerer hvad og hvordan: Elevernes læringsproces og -produkter, forløbet som helhed, målgruppens tilfredshed, m.m.
Karrierelæring
Karrierelæring er en tilgang og metode til at fremme udvikling af elevernes kompetencer til at vælge vej. Midler kan være aktiviteter som brobygning, virksomhedsbesøg, ung-til-ung undervisning, informationssøgning m.m. Aktiviteterne forberedes af og med eleverne, imens kan der være opgaver og der samles op efterfølgende mhp. mulige karrierevalg (= ”før – under – efter”).
Målgrupper og samskabelse
Omhandler elevernes og undervisernes arbejde med interessenter uden for skolen. Inddragelse af interessenter i fx cases, undersøgelser eller arrangementer.
Digitalisering i samfundet
Omhandler digital produktion i forhold til samfundsudviklingen: Digitalisering af brancherne, af hverdagslivet, globale tendenser, FNs Verdensmål, m.m.
Læring i uddannelseskæden
Omhandler at skabe sammenhængende forløb på tværs af uddannelsesinstitutioner og -niveauer. Lærer-lærer samarbejde, elev-elev tutoring og opbakning fra ledelsen.
Erhvervsliv og værdiskabelse
Omhandler samarbejde med erhvervslivet om indhold i undervisningsforløb og karrierelæring for eleverne. Teknologierne i brug og kommercielle aspekter.
Valg af teknologier
Omhandler valg af udstyret og software til den primære (digitale) produktion, udviklingsmiljøer hhv. brugerapps. Evt. understøttende teknologier, fx video, billeder m.m.
Metoder
Metodevalg er afhængigt af bl.a. forløbets varighed, faglige niveau, elevtyper og læringsmål. Metoderne betinger ikke hinanden, men kan supplere hinanden.
Iterative designprocesser
Omhandler mere åbne processer i længerevarende forløb, med trinvise forbedringer. Fra friere til mere styrede forløb med rammer, benspænd, prædefinerede milepæle og teamroller. Iterativ udvikling er flere på hinanden følgende omgange i designcirklen (design, test, evaluering og justeringer), som egner sig godt for længerevarende forløb.
Worked examples, parprogrammering
Worked examples er de digitale ressourcer/simple programmer til videreforarbejdning i/af elevproduktioner.
Parprogrammering foregår parvis, og eleverne videreudvikler på hinandens produkter. Det understøtter samarbejdet og de faglige samtaler. Fx hvert 10. minut skiftes plads foran computeren.
Leg, eksperimenter og innovation
Omhandler afprøvende tilgange til teknologier med minimal instruktion. Evt. brug af legemetoder, mhp. relationsdannelse, idégenering, turde at fejle, m.m.
Faglig refleksion
Efter afslutningen beskriver eleverne deres arbejdsproces og teknologiske produkter med de korrekte fagudtryk og ift. den bagvedliggende teori. Omhandler, hvad eleverne har lært om teknologi og designprocesser.
Digital myndiggørelse
Omhandler en kritisk, refleksiv og konstruktiv tilgang til digital teknologi og automatisering. Bl.a. at opnå en forståelse for sikkerhed, etik og konsekvenser.
Etik og samfund
Omhandler etiske problemstillinger og dilemmaer ved anvendelse og udvikling af teknologi til fx at støtte klima, økonomi, sikkerhed, at bekæmpe kriminalitet m.m.
Individuel relevans
Indebærer at relatere teknologierne til en betydning for de enkelte elever, fx i deres fritid og hverdagsliv, deres fremtidsdrøm, deres læringspræferencer, etc.
Kritisk tænkning
Omhandler refleksion med fordele, ulemper og konsekvenser ved teknologier og deres anvendelse, bl.a. cyber- og persondatasikkerhed, kildekritik, m.m.
Teknologisk handleevne
Omhandler evnen til at udtrykke sig og mestre værktøjer i forhold til at kunne udtrykke computational thinking i et digitalt artefakt, udvælge og udvikle digitale kilder.
Praksisfællesskaber
Den digitale kompetence og færdighed i anvendelse i sociale professionskontekster, også når praksis foregår i handlinger som ikke udtrykkes i ord.
Computational Thinking
Omhandler fremme af elevernes evner til at anvende viden om netværk, algoritmer, programmering. Logisk tænkning, abstraktion og mønstergenkendelse. Datamodellering, test og afprøvning.
(Under revidering. Publiceres i løbet af efterår 2024.)
MYRE DK-DE has actively promoted its mission and methods throughout the entire project period. As a result, stakeholders have been extensively engaged, and professionals have been invited to join the MYRE initiative and continue the journey together, also after the end of the project.
A few highlights from the promotional activities can be accessed here.
Events in MYRE DK-DE have encompassed a range of meetings and seminars:
What does sweat, and virtual reality have to do with treating social anxiety? VRaid is an ambitious collaboration between clinical and technical researchers that seek to develop the VR8 solution, an innovative and personalized treatment for social anxiety in adults.
Through VR patients are being exposed to anxiety-inducing scenarios controlled by their therapist, such as public speaking or public transportation. In real-time biometric data, such as heart rate, sweat and respiration levels, informs the VR system that then adapts to the individual needs of the patient.
Through artificial intelligence the biometric data is compiled into an ‘anxiety model’. Over time the system creates an anxiety model for each patient, and this knowledge is used by the therapist to estimate how challenging the anxiety-inducing situation should be. For instance, if simulating public speaking should the audience be more attentive to what the patient is saying, or would it be beneficial for the treatment to introduce an indifferent audience?
The research within this project features exploration of the combination of design methods such as iterative development methods, filmmaking, UX and participatory design used for the design and development of the interactive 360-degree scenarios within the VR8. The project also feature research in AI in anxiety treatment.
Project contact: Gunver Majgaard
Project website: https://vr8.dk/
#VRET #VR #Exposure Therapy #CBT #Social Anxiety Disorder #Design methods “Iterative design